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Abstract 

The so-called “bullet effect” refers to the perforation of a rockfall protection mesh by impact 

of a small block which has a kinetic energy lower than the design value, where the design 

value is determined through tests with relatively large blocks. Despite playing a key role in 

the overall performance of a flexible rockfall barrier, this phenomenon is still poorly 

understood at present. An innovative approach for quantitatively characterizing this effect 

based on dimensional analysis is proposed in this paper. The analysis rests on a hypothesis 

that the relevant variables in the impact problem can be combined into three strongly 

correlated dimensionless parameters. The relationship between these dimensionless 

parameters (i.e., the scaling relationship) is subsequently investigated and validated by means 

of data generated with a finite element model. The validation process shows that the 

dimensionless parameters are apt and that the proposed scaling relationship characterizes the 

bullet effect with a reasonable level of accuracy.  An example from the literature involving 

numerical simulation of a full rock barrier is considered, and satisfactory agreement between 

the calculated performance of the barrier and that predicted by the established scaling 

relationship is observed. 
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1. Introduction 

In many countries, rockfall represents a serious risk to people and infrastructure. Rockfall 

risks are mitigated either by stabilizing the rock mass or by installing protective systems such 

as engineered barriers, shelters, or earth dams. Among available protective systems, rockfall 

barriers, which typically consist of steel or concrete posts, cables, and a wire mesh, are 

attractive for the relative adaptivity of their design and the effective protection they provide 

over a broad range of impacting energy (Descoeudres et al. 1999). The impacting energy is 

usually determined as the sum of kinetic (translational) and rotational energy of the rock 

block at the instant just before it collides with the barrier. Both components of impacting 

energy are commonly obtained from numerical simulations of rockfall trajectories for the 

particular slope under consideration.  

 

Protection barriers are usually tested to ascertain the threshold of impacting energy above 

which failure of the barrier will occur. This critical value of energy, or design value, is 

typically determined by means of experiments (Duffy and Smith 1990; Peila et al. 1998: 

Bertolo et al. 2009; Grassl et al. 2002; Hearn et al. 1995; Arndt et al. 2009), although 

numerical and analytical methods are increasingly being used to predict barrier performance 

(Anderheggen et al. 2002; Volkwein 2005; Cazzani et al. 2002; Cantarelli et al. 2008). 

Physical testing of barriers as they would be installed in the field is typically not a trivial 

exercise, and the free-fall test, a much simpler experiment, is often preferred to obtain an 

impact (Gerber 2001; EOTA 2008). In the free-fall test, where the rotational component of 

energy is negligible and total energy is solely kinetic, the impacting energy is determined 

simply by the block mass and drop height. In that case, a basic, unresolved question arises as 

to which combination of block mass and velocity should be used to achieve the desired 

impacting energy for the test. The Swiss design guidelines (Gerber 2001), for example, 

require using not one but multiple block dimensions, including small sizes, for the approval 

of a rockfall protection kit. This is motivated by the fact that a small block impacting at high 

speed may perforate a barrier despite having a kinetic energy lower than the critical value 

determined from tests involving a large block. More generally, there is a size effect when 

dealing with impact of blocks on a barrier. This effect is usually referred to as the “bullet 

effect” in the literature and it has been mentioned by a number of researchers (Cazzani et al. 

2002; Cantarelli et al. 2008; Giani 1992; de Col and Cocco 1996; Buzzi et al. 2011).  
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Figure 1 shows two manifestations of the bullet effect. A typical failure in a steel wire mesh 

due to impact of a small block can be seen in Figure 1(a), where a block with a diameter of 

roughly 30 cm has impacted a rockfall barrier between two horizontal cables and has 

perforated the mesh. As discussed by De Col and Cocco (1996), failures of this kind are 

usually localized in small areas of the mesh and do not involve structural elements such as 

posts and cables. Figure 1(b) shows results obtained from a numerical model developed by 

Cazzani et al. (2002). The dependence of the mesh performance on the block size clearly 

appears: the smaller the block, the smaller the impacting energy at failure. This raises the 

issue of the relevance of kinetic energy as a design criterion, since it is evident that there is no 

single value of kinetic energy (i.e., a design value) that effectively defines a barrier’s ability 

to withstand impacts over a range of block sizes.  

 

Here Figure 1  

 

Fig. 1 Examples of the bullet effect: (a) perforated rockfall mesh; (b) kinetic energy at failure of a rockfall 

barrier for different block sizes (adapted from Cazzani et al. (2002)) 

 

 

Interestingly, numerical models can reproduce the loss of performance associated with the 

bullet effect (Cazzani et al. 2002; Buzzi et al. 2011) but the origin of the phenomenon is 

seldom analyzed. It is generally conjectured that this phenomenon is the result of stress 

concentration. Quite recently, Buzzi et al. (2011) developed a numerical model of block 

impact on a wire mesh and conducted some analysis to investigate the idea of stress 

concentration. The authors came to the conclusion that the progressive loss of performance of 

a mesh can be related to a lower number of wires entering into plasticity as the block size 

decreases. Consequently, the wires elongate more to absorb the energy and reach failure 

quicker. However, this failure mechanism is partly a consequence of the modelling 

assumptions (e.g. material behaviour and mesh connections), and it is unsure if such a 

mechanism would prevail in practice.  

 

Despite the relevance of the bullet effect for the design and performance of rockfall 

protective systems, there is a clear lack of data in the literature on this topic. More critically, 

there is currently no efficient predictive method that could be used to estimate the 
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performance of a barrier for different sizes of impacting blocks. Extensive physical testing or 

numerical modelling can potentially be employed to check the barrier performance; however, 

such a process is very time-consuming on account of not only the repetitions required at 

various block sizes but also the iterations necessary to determine the block speed inducing 

failure at a particular block size. A more efficient approach requiring a fewer tests or lower 

computational cost is clearly needed.  

 

It is herein proposed to use dimensional analysis to characterise the performance of a barrier 

in terms of the bullet effect. In the first part of the paper, dimensionless parameters pertaining 

to a rock block impacting the wire mesh within a rockfall barrier are derived after due 

identification of the relevant physical variables. The second part of the paper presents the 

results of a numerical model that has been developed using Abaqus 6.10 to create a database 

of the responses of different meshes to the impact of blocks of various sizes. Finally, the 

scaling relationships determined through dimensional analysis and the numerical results are 

validated by comparison with results obtained in a previous study for a full barrier. The 

results suggest that the bullet effect can be satisfactorily characterized by three essential 

dimensionless parameters containing the relevant variables of the problem. For the first time, 

a network of performance curves, referred to as the “Rockfall Barrier Performance Model”, 

or RoBaP, is produced and used to capture the dependence of the barrier performance on the 

block size.  

 

2. Definition of the physical problem  

Before conducting the dimensional analysis, an idealization of the rockfall impact problem is 

first described in relation to real rockfall protection systems, and the relevant physical 

variables to include in the analysis are identified.   

 

Figure 2(a) shows a rockfall barrier and how it can deform upon impact. The design of a 

barrier is not unique, though it invariably revolves around several critical elements: 

foundations, posts, an intercepting structure (steel mesh) and top/bottom cables. Usually, the 

part of mesh located between two successive posts is referred to as a “module.” It can be seen 

in Figure 2(a) that the mesh is not necessarily attached to all posts, which are mainly used to 

support the top and bottom cables. 
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Here Figure 2 

 

Fig. 2 (a) Photograph of a rockfall barrier after Peila and Oggeri (2005). (b) Idealized rockfall impact problem 

used for the numerical model showing aperture A, spring stiffness K, and wire diameter Dw 

 

 

The performance of a barrier upon impact is affected by many variables. Some play a major 

role, while others have a minor effect. For example, the coefficient of friction between the 

mesh and the block, the Poisson’s ratio of the steel mesh, and the mechanical properties of 

the block (which typically does not fail upon impact) are here considered to have negligible 

effect. On the contrary, dimensions of the block, strength of the steel mesh, mesh geometry 

and, last but not least, the stiffness of the system all play a major role in the response of a 

rockfall barrier. As a concept, “stiffness” refers to the extent to which the barrier deforms 

upon impact. Interestingly, despite being a crucial property of a rockfall barrier, stiffness is 

seldom quantified on account of the many underlying factors that influence this property. 

Among other factors, the overall stiffness comes from the type of mesh (chain link or double 

twist), deformability and ductility of steel, distance between posts, length and height of the 

mesh, the effect of energy dissipators (if present), the means by which the posts and cables 

are supported, and the number of cables. 

 

For the present study concerning perforation of only a small portion of the mesh in a rockfall 

barrier, the independent factors that lead to the overall stiffness of the barrier are irrelevant. 

That is, the full rockfall barrier need not be considered in the analysis, and the free-fall 

impact problem can be regarded as a block impacting a segment of mesh that is somehow 

supported at the periphery by springs of effective (nonlinear) stiffness, which in general may 

vary specially over the region of support. By viewing the problem in this way, no 

approximation has yet been made, although it is clear that the degree to which the idealized 

problem represents a real rockfall barrier depends on the assumed position and stiffness of the 

springs. In this paper, we assume for simplicity that the springs possess constant linear 

stiffness, denoted K, and they support a rectangular region of mesh at regular intervals, as 

shown in Figure 2(b). The merit of assuming constant linear stiffness is in the resulting 

simplification of the analysis, although some comments as to the determination of K for real 

systems is presented in the prediction exercise at the end of the paper (Section 7). The 
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rectangular region of mesh has height H and length L > H. It will be shown in Section 4 that 

H is the key dimension in the impact problem, and H alone is therefore included as a relevant 

variable in further analysis. 

 

The configuration for the wire mesh is also shown in Figure 2(b). The mesh is chain link 

(elementary cell of diamond shape) as opposed to a double twist (elementary cell of 

hexagonal shape), and each cell in the mesh is a diamond (rhombus) whose shorter diagonal 

has length denoted by A, where A is referred to as “aperture.” The shape of the diamond 

corresponds to an existing rockfall mesh. The wire itself has diameter has diameter Dw, and it 

is assumed as in the work of Cazzani et al. (2002) that the material is elastic-perfectly plastic 

with yield strength y and a specified failure strain. As discussed in Section 4, elastic 

properties of the wire and the failure strain are held constant in the analysis. Furthermore, the 

elastic properties of the wire are seen as having secondary importance in the block impact 

problem, and the failure strain is already a dimensionless parameter. These quantities, as well 

as the density of the wire, are therefore excluded here as explicit variables. 

 

The shape of the impacting block, which is in accordance with testing recommendations from 

ETAG 027 (EOTA 2008), is shown in Figure 2(b). The nominal length of the block’s edges is 

denoted Db. With the dimension defined in this way, the block density suffices to fully 

characterize the rigid block. The block density is denoted ρ, and throughout the paper a 

constant value of ρ = 2400 kg/m
3
 is assumed since the variability of density of natural dense 

rocks is fairly low (Cazzani et al. 2002).  

 

The performance of the idealized system is expressed in terms of critical speed v, which is the 

minimum speed required for a given block to perforate the mesh. On the basis of the 

considerations above, it is implicitly assumed that there exists some function f that relates v to 

the remaining primary variables: 

 v = f(ρ, K, σy, H, A, Db, Dw) (1) 

where  is the block density, Db its characteristic length, H the mesh height, A its aperture, 

Dw the wire diameter y the material strength and K the stiffness of the system.  
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3. Dimensional analysis of block impact on a barrier 

 

Dimensional analysis rests on the Buckingham Pi Theorem (Buckingham 1914), which states 

that a physical problem involving N independent variables and P dimensions can be 

reformulated using N-P dimensionless parameters. The main motivation of performing 

dimensional analysis is to reduce of the number of parameters required to describe a problem 

(Langhaar 1951). As a convention, physical (dimensional) quantities as defined in Section 2 

are referred to as “variables” throughout the paper, whereas the dimensionless groups of 

variables are referred to as “dimensionless parameters.”   

 

Equation (1), which describes the physical problem of interest, involves eight variables and 

three dimensions (time, length and mass). According to the Buckingham Pi theorem, Eq. (1) 

can be re-written using only five dimensionless parameters. These five dimensionless 

parameters are not, however, uniquely determined by the dimensions of the eight original 

variables alone. In this paper, the analysis proceeds by first postulating the key dimensionless 

parameters and then using the numerical model to assess their validity.  

 

By analogy to other impact problems in solid mechanics (Li and Jones 2000; Johnson 1972), 

it is proposed to group to the critical speed, the stiffness of the system and the height of the 

mesh in the first dimensionless parameter, E
*
, as follows: 

 
 (2) 

The parameter E
*
 bears similarity to the “damage number” used by Johnson (1972), with the 

main differences being that  is the density of the impacting block (as opposed to the material 

with which it collides) and the stiffness of the barrier, rather than the yield strength, appears 

in the denominator. Parameter E
*
 is the descriptor of barrier performance in terms of critical 

speed, and it is hence referred to as the “performance parameter.” It should be noted that E
*
 

does not directly relate to kinetic energy (i.e., 0.5mv
2
, where m is block mass) but rather the 

square of critical speed. 

 

 

K

Hv
E

2
* 
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It is assumed that the second fundamental dimensionless parameter should quantify the 

stiffness of the barrier in relation to the yield strength of the wire.  This parameter, denoted S
*
 

and referred to as the “strength-stiffness parameter,” is therefore chosen as 

 

 (3) 

Large values of S
*
 imply that the barrier is relatively stiff, and deformation of the barrier prior 

to the onset of yielding is small.  Conversely, small values of S
*
 imply that large deformation 

will occur prior to failure.  

 

Parameters E
*
 and S

*
 are independent of the characteristic length of the block, Db, as well as 

the two parameters pertaining to the geometry of the mesh, Dw and A. Rather than defining 

three independent dimensionless parameters to account for the influence of these parameters 

(e.g., Db/H, Dw/H, and A/H), it is hypothesized that Db, Dw, and A can be combined in a single 

dimensionless parameter, called the “geometrical parameter,” defined as  

 
 (4) 

where the exponents a, b, and c are as yet unknown but satisfy the following condition, as 

required for dimensional homogeneity: 

 a + b + c = 0 (5) 

The strong assumption that Db, Dw, and A can be lumped together in a single dimensionless 

parameters is made with the expectation that stress concentrations are determined by the local 

geometry of the mesh in relation to the block size. This hypothesis is tested in due course in 

the paper. 

 

The dimensionless parameters proposed in this section potentially form the basis for the 

following simple alternative to Eq. (1): 

 
 (6) 

In accordance with the literature on dimensional analysis and similitude, Eq. (6) is here 

referred to as the “scaling relationship” for a block impacting a barrier. Rather than 

identifying f, a function of seven variables in Eq. (1), the task is now to identify F in Eq. (6), 

a function of only two parameters. It remains to be shown, however, that Eq. (6) provides a 

reasonable approximation to the data available for block impact on a barrier. Towards this 
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purpose, the remainder of the paper is dedicated to validation of the Eq. (6) and the 

dimensionless parameters involved. In the present study, the data used to validate Eq. (6) is 

generated using an upgraded version of the numerical model developed by Buzzi et al. 

(2011). An outline of this model is presented in the next section. 

 

4. Numerical model 

With a view towards investigating the soundness of Eq. (6) and the dimensionless parameters 

E
*
, S

*
, and G

*
, numerical simulations of free-fall tests were performed using the dynamic 

finite element code Abaqus/Explicit 6.10. This section presents a broad overview of the 

numerical procedure and underlying assumptions.   

4.1 Geometry 

As discussed in Section 2, the numerical model is an idealization of a free-fall test on a full 

rockfall protection barrier. It consists of a concrete block impacting vertically and centrally 

on a steel mesh (Figure 3). The mesh was connected to rigid supports (not shown in Figure 3) 

by means of springs of stiffness K, which were added to the initial model developed by Buzzi 

et al. (2011) in order to artificially vary the stiffness of the idealized system. Rather than 

simulating the initial gravitationally induced free fall, the block was placed in contact with 

the mesh in the simulations and given a prescribed initial velocity combined to gravitational 

loading to reproduce the whole impact. 

 

Here Figure 3 

 

Fig. 3 Plan view of the numerical model developed in Abaqus showing height of the mesh H, stiffness of a 

single spring K, aperture of the mesh A and diameter of the wire Dw. The block impacts the mesh in its centre 

and has an initial velocity orthogonal to the page 

 

4.2 Mesh and elements 

The impacting block was made of 4-node tetrahedral elements (C3D4), and the steel wires 

were discretized using 2-node linear 3-D beam elements (B31). The beam elements had a 

circular section of diameter Dw and were rigidly connected at the nodes. Only one element 
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was used per diamond side. This choice might affect the results in terms of matching 

experimentally observed mesh behavior, but such a potential error is immaterial for the 

comparative study of performance conducted in this paper. The springs were inserted as 

connector elements between the outer nodes and a support beam, which was constrained in 

displacement and rotation.  

4.3 Material and contact properties 

In the present study, it is assumed that the impacting block does not fail. Consequently, the 

block in the numerical simulations was composed of elastic material with parameters 

representative of concrete or rock (E=30 GPa, = 0.3 and = 2400 kg/m
3
). As discussed in 

Section 2, elastic-perfectly plastic behaviour (E=210 GPa, = 0.3 and variable yield strength 

σy) was assumed for the steel of the mesh, which had a density of 7800 kg/m
3
. In the 

simulation, element failure happens instantaneously when the plastic strain at failure p
f
 is 

reached. Throughout the simulations, p
f
 was set at 10%, which is large for steel. The 

assumed value comes from the calibration against experimental results of free-fall tests 

(Buzzi et al. 2011), where it was found that a large value of p
f
 could compensate for errors 

introduced when simplifying the true boundary conditions by springs of constant stiffness. A 

more realistic (lower) value would certainly change, but not compromise, the results. Finally, 

dry friction with coefficient of friction 0.3 was specified as the contact interaction between 

the mesh and the block.  

4.4 Typical results 

Critical velocity v was evaluated for roughly 80 different combinations of the variables 

appearing in Eq. (1). For each particular choice of variables, the critical velocity was 

iteratively determined by running 3 to 4 simulations with varying initial velocity. Hence, 

around 300 simulations were conducted. Figure 4 shows the deformed mesh (in perspective 

and side view) before and after failure from a simulation where velocity was set to the critical 

value v. The deformation and failure pattern are in good agreement with experimental tests 

(Buzzi et al. 2011). Figure 4(a) also shows the stress pattern within the mesh, where the 

darker shades of grey indicate higher axial stress. It can be seen that the impact generates a 

cross-shaped distribution of axial stress in which the cross aligns with the strands of the 

mesh. Such a stress distribution was already observed by Anderheggen et al. (2002). 
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Here Figure 4 

 

Fig. 4 (a) View of the deformed mesh just before failure. The shade of gray indicates the level of axial stress in 

the wires (light grey: stress lower than 500 MPa; dark grey: stress from 500 to 1500 MPa). (b) Side view of 

deformed mesh just before failure. (c) View of the failure pattern (level of stress not indicated on this 

subfigure).Mesh of 2.5 m per 2.5 m 

 

Figure 4 pertains to a mesh with H = L = 2.5 m. Plotting the tensile stress distribution on a 

larger mesh, such as the mesh shown in Figure 5 where H = 2.5 m and L = 5 m, highlights 

that the height of the mesh is critical in terms of stress distribution. It can be seen that the 

extra length of mesh when extending it from 2.5 m to 5 m does not carry much of the tensile 

stress generated by the impact.  

 

Here Figure 5 

 

 

Fig. 5 Distribution of axial stresses within wires for mesh with H = 2.5 m and L = 5 m upon impact (Db = 0.65 

m, K = 50 kN/m, y = 1600 MPa) 

 

5. Overview of the validation steps for the scaling 

relationship 

The validation of the three dimensionless parameters and the evaluation of the function F in 

Eq. (6) were achieved in successive steps. These steps are described in the following and 

summarized in Table 1, which indicates quantities that were varied (V), maintained constant 

(C) or determined as the result of the simulation (R). As shown in the table, different groups 

of influencing variables were varied one at a time to conduct a rigorous and thorough 

validation. This was done for both the largest and the smallest block considered in the 

analysis (Db=0.65m and Db=0.25 m, respectively). 

 

In the first phase of the validation (discussed in Section 6.1), the geometric parameters 

appearing in G
*
 were viewed as fixed, and the relationship between E

*
 and S

*
 was assessed. 

This was conducted in three steps (steps 1 to 3 in Table 1). In step 1, three values of stiffness 
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were combined with three values of strength for each of the two blocks. This led to nine data 

points used to determine if a correlation could be established between E
*
 and S

*
. The 

robustness of the correlation was then tested either by investigating multiple combinations of 

stiffness and strength yielding the same value of S
*
 (step 2) or by introducing different mesh 

dimensions (step 3).  

 

In the second phase (discussed in Section 6.2), the exponents appearing in G
*
 (Eq. (4)) were 

evaluated, and the function F was partly defined. The validation of G
*

 involves, first and 

foremost, identification of the unknown exponents a, b and c in Eq. (4). Instead of guessing 

the possible combinations satisfying dimensional homogeneity (Eq. (5)), back analysis was 

performed to identify the exponents in a more rigorous and systematic manner. To 

accomplish this, different combinations of block size and wire diameter yielding the same 

mesh performance were determined (step 4 in Table 1). This provided information about 

exponents b and c. Lastly, the value of a was deduced from the condition of dimensional 

homogeneity, and the overall validity of values determined for exponents a, b, and c were 

checked in step 5.  

 

Table 1. Variations of the parameters and corresponding figures for the different steps of validation (V = varied, 

C = constant and R = result).  

Validation of Step Figure K σy H A Dw Db v 

E
*
 – S

*
 1 6, 7 V V C C C C R 

E
*
 – S

*
 2 8 V V C C C C R 

E
*
 – S

*
 3 9 C C V C C C R 

G
*
 4 10 C C C C R V C 

G
*
 5 11 C C C V V C R 

 

6. Validation of the proposed scaling relationship 

6.1 Validation of E* and S* 

The first step of the validation of the proposed scaling relationship (Eq. 6)) was to determine 

whether a satisfactory correlation could be obtained between E
*
 and S

*
 for fixed values of the 

variables appearing in G
*
 (Eq. (4)). In addition to the critical velocity v, four parameters 
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appear in E
*
 and S

*
: density of the block ρ, stiffness K, yield strength y, and the mesh height 

H. As discussed in Section 2, ρ does not vary substantially between various types of rock and 

concrete, and it was therefore considered fixed (= 2400 kg/m
3
). On the other hand, K and y 

are highly variable, and to investigate the validity of Eq. (6), these parameters were varied 

independently. The effect of varying H is considered later in this section. 

 

Figure 6 shows the result of the simulations for the largest and smallest blocks considered in 

the analysis (Db = 0.65 m and 0.25 m, respectively), where simulations were run at constant 

aperture (A = 70 mm), constant wire diameter (Dw = 3 mm), constant mesh height (H = L = 

2.5 m) and the nine combinations of K and y from Table 2. Figure 6 displays a clear linear 

correlation (on a log-log scale) between E
*
 and S

*
 for the two different block sizes, with 

relatively small scatter about the corresponding trend lines. This suggests that E
*
 and S

*
 are 

appropriate dimensionless parameters for characterizing the critical block velocity with fixed 

geometric parameters for the mesh (i.e., fixed G
*
). Figure 7 shows similar trend lines 

evaluated for each of the block sizes considered (Db = 0.25 m, 0.35 m, 0.4 m, 0.55 m and 

0.65 m). For clarity, the data points are omitted in the figure. 

 

Table 2. Values of stiffness K and steel strength y used for the first step of validation. Nine combinations of K 

and y were created from these values, leading to nine values of S. Other parameters were kept constant: H = L 

= 2.5 m, Dw = 3.0 mm, A = 70 mm. 

 

K [kN/m] y [MPa] 

12, 50 and 130  400, 700 and 1600  

 

 

Here Figure 6 

 

Fig. 6 E* vs. S* for two blocks (Db= 0.25 m and 0.65 m) and for nine different combinations of K and y. Power 

trend lines are also shown, where correlation coefficients are R2 = 0.94 and 0.99 for Db = 0.65 m and 0.25, 

respectively 

 

Each trend in Figure 7 corresponds to a given block size, and it should be recalled that the 

simulations were run at constant aperture (A=70 mm) and wire diameter (Dw=3 mm). 
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Consequently, as per Eq. (4), the trends presented in Figures 6 and 7 are evolutions at 

constant G
*
.  

 

For each trend in Figure 7, low values of S
*
 correspond to high strength and/or compliant 

systems. Consequently, the critical speed required for a block to perforate the mesh is high. 

On the other hand, when reducing the mesh strength and/or stiffening the system (high values 

of S
*
), the critical speed decreases. This behavior is consistent with experimental 

observations. Also, the relative position of the trends is also consistent with findings from 

experiments: for a given system (i.e., for a given S
*
) a smaller the block requires a higher 

critical speed (i.e., E
*
). Note that the existence of the bullet effect cannot be evidenced from 

these trends alone, since higher speed is always required to perforate a mesh as the blocks get 

smaller, even without bullet effect.  The manifestation of the bullet effect in the proposed 

scaling relationship is discussed in the last section of the paper. The network of curves as 

shown in Figure 7 is here referred to as the “Rockfall Barrier Performance Model” or, more 

simply, the RoBaP Model. 

 

Here Figure 7 

 

Fig. 7 Trend lines showing E* vs. S*for all different values of Db 

 

For E
*
 and S

*
 to be appropriate dimensionless parameters, E

*
 should remain constant as K and 

y are varied in proportion to one another (i.e., constant S
*
). To verify this, additional 

simulations in which the same factor  was applied to both stiffness and yield strength were 

performed, where the factors  were selected so that 

 

 (7) 

In Eq. (7), K0 and y0 are reference values of stiffness and yield strength that determine the 

value of S
*
. Four different values of S

*
 (i.e., four pairs of K0 and y0) were considered, as 

shown in Table 3. By focusing only on the smallest and largest blocks, a total of 32 data 

points were generated in this way to validate the correlations between E
*
 and S

*
 observed in 

Figure 7. 
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Figure 8 shows E
*
 determined from simulation at each of value of S

*
 and  considered. In 

most cases, similar values of E
*
 were obtained at each different value of . Some scatter is 

evident, however, for the largest block (Db=0.65 m) with S
*
 = 74.3 and 130. The reason 

behind these deviations is unknown at present, but it is speculated that edge effects (boundary 

conditions) play a role at these points on account of the large size of the block combined with 

high stiffness. Nevertheless, the results shown in Figure 8 basically confirm the existence of a 

relationship between E
*
 and S

*
 and the possibility of quantifying the bullet effect in terms of 

dimensionless parameters instead of physical variables. It should be emphasized that the 

trend lines shown in Figure 8 are the same as those from Figure 6, implying that the 

previously established correlations between E
*
 and S

*
 are quantitatively correct.  

  

 

Table 3. Reference values of stiffness and yield strength, as well as corresponding values of S*, used for 

validation of E*
 and S*.  

K0 [kN/m] y0 [MPa] S
*
 

12 1600 3 

50 1600 12.5 

130 700 74.3 

130 400 130 

 

Here Figure 8 

 

Fig. 8 Verification of the correlation between E* and S* with multiple combinations of K0/σy0 and α (H = 2.5 m, 

Dw = 3.0 mm, A = 70 mm) 

 

Up to this point, the mesh height H has been a constant in the analysis. This parameter 

appears in both E
* 
and S

*
, and it is therefore of interest to determine whether varying H 

independently affects (i.e., maintains or destroys) the correlation between these two 

dimensionless parameters. In addition to the initial mesh configuration (2.5 m  2.5 m), three 

other configurations were considered: 1 m  1 m, 2.5 m  5 m and 5 m  5 m. Parameters K 

and σy were here kept constant, with K = 50 kN/m and σy = 1600 MPa, and block sizes were 

again Db = 0.65 m and 0.25 m. The smallest mesh was not tested with the largest block, as 

significant edge effects were expected. 
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Figure 9 shows the performance of the three mesh configurations, where it can be seen that 

the results fall on, or very close to, the trend lines obtained with the initial mesh. This 

confirms that E
*
 and S

*
 are suitable dimensionless parameters exhibiting a strong correlation. 

Indeed, all physical parameters in *
 and S

*
, apart for the material density, have now been 

varied independently in the analysis, and each time, the same relationship between *
 and S

*
 

is obtained with reasonable accuracy.  

 

 

 Here Figure 9 

 

Fig. 9 Influence of mesh height H on the correlation between * and S*. The grey shapes indicate the mesh 

shape and dimensions. H is defined as the shortest dimension 

 

 

6.2 Validation of G* 

For G
*
 and the proposed scaling relationship to be valid, the relationship between E

*
 and S

*
 

should remain unchanged when the parameters appearing the definition of G
*
 (aperture A, 

wire diameter Dw and block diameter Db) are varied independently but G
*
 itself remains 

constant. As a first step towards identifying the exponents in the definition of G
*
, we first 

consider the combinations of Dw and Db that lead to constant values of E
*
 and S

*
 when A is 

constant. 

 

Using the results of the simulation with A = 70 mm, Dw = 3 mm, H = 2.5 m, K = 50 kN/m, y 

= 1600 MPa and Db = 0.65 m as a basis, a number of simulations were performed to ascertain 

the manner in which block size and wire diameter should be simultaneously reduced or 

increased to maintain the mesh performance (E
*
 = 10). Three block size sizes (Db = 0.25 m, 

0.35 m and 0.55 m) were considered in addition to the initial diameter of Db = 0.65 m, and 

the three corresponding wire diameters required to give E
*
 = 10 were iteratively evaluated. 

This process, which pertained to S
*
 = 12.5, was then repeated with S

*
 = 74.3 (H = 2.5 m, K = 

50 kN/m, y = 1600 MPa), and this yielded another three wire diameters that were found to 

be approximately equal to those calculated previously (Figure 10(a)). Finally, the whole 
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analysis was repeated starting from a small block (Db = 0.25 m) and progressively increasing 

the block size (Figure 10(b)). Again, the wire diameter Dw required to maintain constant E
*
 

was found to be relatively insensitive to S
*
, which is consistent with the proposed scaling 

relationship of Eq. (6). 

 

It can be seen in Figure 10 that there is a strong correlation between the block size Db and the 

wire diameter Dw required to furnish constant E
*
 at specified S

*
. Furthermore, the points in 

Figure 10 can be satisfactorily fitted with a power-type curve which can be written, for both 

values of S
*
, as 

 
 (8) 

where η is a constant. Since the aperture A is considered constant in the back analysis, it does 

not explicitly appear in Eq. (8), however its effect can be accounted for in the constant η. 

Namely, Eqs. (5) and (8) can be combined to find η = G
*
A

1/4
 and 

 

 (9)  

 

 Here Figure 10 

 

Fig. 10 Values of wire diameter Dw required for each block size Db so that* is maintained constant. The 

analysis was performed starting from Db=0.65m with a progressive reduction of the block size (a), and from 

Db=0.25 m with a progressive increase of the block size (b). For each initial block size, two mesh configurations 

were considered (S* =12.5 and 74.3). Aperture of the mesh is constant (A = 70 mm) 

 

Table 4. Values of aperture A and wire diameter Dw used for the final step of validation of G*. 

Db [m] Dw [mm] A [mm] G
*
 

0.65 3 70 0.008 

0.65 2.64 50 0.008 

0.65 2.32 30 0.008 

0.25 3 70 0.0164 

0.25 2.64 50 0.0164 

0.25 2.32 30 0.0164 
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To fully assess the validity of G
*
 as defined in Eq. (9), three different mesh apertures A were 

considered, and the wire diameter was adjusted to keep G
*
 constant (Table 4). Simulations 

were performed with S
*
 =12.5 and 74.3, as previously considered, and corresponding values 

of E
*
 were computed. Results are shown in Figure 11, which also plots the trends determined 

in Section 6.1. The computed values of E
*
 fall close to the previously established trend lines, 

where unique values of G
*
 can now be assigned to each line. Figure 11 confirms that G

*
, as 

defined in Eq. (9), is an appropriate dimensionless parameter. Namely, parameters A, Dw, and 

Db can vary independently but only their combination as it appears in G
*
 affects the 

relationship between E
*
 and S

*
. 

By qualitative comparison with experiments, the physical meaning behind G
*
 is also sound. 

For given S
*
 (given strength and stiffness) a higher G

*
 results in higher E

*
 (higher critical 

speed). An increase of G
*
 can result not only from a decrease in block size, which is the 

origin of the bullet effect, but also from a decrease of mesh aperture or an increase of wire 

diameter. In the later instances, the mesh is made stronger (more steel per unit area) and the 

speed of the block must increase to perforate the mesh.  

 

Here Figure 11 

 

Fig. 11 Correlation between * and S* for various combinations of mesh aperture A, wire diameter Dw, and 

block size Db leading to G* = 0.008 and 0.0164 

 

7. Example of prediction of the bullet effect 

The significance of the proposed scaling relationship resides in its predictive capacity. If test 

data corresponding to one point in Figure 7 is known, then without additional testing, the 

performance of a wide range of other barriers can be immediately estimated using curves 

similar to those presented in the figure, regardless of the particular values for the block size, 

mesh characteristics, and system stiffness. In this section, such an approach is tested using 

numerical data presented by Cazzani et al. (2002) for a full barrier with height H = 3 m (see 
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Figure 12(a)), square mesh cell (as opposed to diamond shape before) and spherical blocks. 

The variables assumed in the previous study are given in Table 5.  

 

A calibration process is employed to determine stiffness K for the system analyzed by 

Cazzani et al. (2002), who considered the full barrier rather than the simplified equivalent 

described in this paper. First, it is recognized that variables assumed in the previous with a 

block size of Db = 1.3 m yield a value of G
*
 = 0.0098, which is very close to the value for one 

of the trend lines from Figure 7 (Db=0.55 m; G
*
=0.0092). Considering the two values of G

*
 to 

be sufficiently close, the objective is then to find the value of K which causes the parameters 

E
*
and S

*
, as evaluated from the data of Cazzani et al., to fall on the trend line from Figure 7, 

given by 

   (10)  

In this way, the equivalent stiffness for the full barrier of Cazzani et al. can be iteratively 

computed as K = 8.1 kN/m, which corresponds to S
* 

=1.8. 

 

Table 5. Variables assumed by Cazzani et al. (2002) and used in the prediction exercise.  

H [m] [kg/m
3
] A [m] Dw [mm] y [MPa] Block Diameter Db [m] 

3 2600 0.2 8 1500 0.3, 0.5, 0.75, 1.0, 1.3 

 

Upon determining K, of the critical velocities for smaller blocks (diameters of 1m, 0.75 m, 

0.5 m and 0.3 m) can be predicted using the trends from Figure 7 (0.008 ≤ G
*
 ≤ 0.0164), the 

equations of which are presented in Table 6. Note that the two smallest blocks used by 

Cazzani et al. (Db = 0.3 m and 0.5 m) correspond to G
*
 = 0.2 and 0.295 respectively, which 

are out of the initial range obtained in Figure 7. In order to investigate these cases, two other 

trends were defined by running more simulations as previously.  
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Table 6. Block diameters used by Cazzani et al. (2002) with corresponding values of G* and roughly applicable 

trend lines from present study. 

Db [m] from 

Cazzani et 

al. 

G
*
 from 

Cazzani et 

al. 

G
*
 from 

present study 
Equation of trend line 

1 0.0120 0.0116  

0.75 0.0148 0.0128  

0.5 0.0201 0.02  

0.3 0.0295 0.0295  

 

 

 

 

Here Figure 12 

 

 

Fig. 12 (a) View of the full barrier used by Cazzani et al. (2002). (b) Evolution of kinetic energy at failure as 

function of block diameter: original numerical data by Cazzani et al (2002) and prediction using the RoBaP 

model 

 

The equations presented in Table 6 can be used to determine E
*
 for each block, and from this 

value of E
*
, the critical speed and the kinetic energy can also be predicted. As the bullet 

effect is best seen when expressing the performance of the barrier in terms of kinetic energy, 

Figure 12(b) compares the values of kinetic energy obtained by Cazzani et al. (2002) to those 

predicted by the proposed scaling relationship. 

 

The predictive capacity of the scaling relationship when applied to the bullet effect can be 

clearly seen in Figure 12(b). The calibration was performed based on the block with Db = 1.3 

m, and hence there is a perfect match. Except for the block with Db = 1.0 m, which is clearly 

abnormal, the values of kinetic energy are predicted relatively well. In particular, the 

progressive loss of performance (a reflection of the bullet effect) is well captured. One might 

argue that the increase of kinetic energy from Db = 1.3 m to 1m displays a flaw in the 

proposed scaling relationship. However, one must bear in mind that the scaling relationship 
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does not rely on the concept of kinetic energy, and there is no condition that kinetic energy 

cannot increase as the block size is reduced. Also, the critical speed for the anomalous point 

has been somewhat overestimated due to some approximations made during this prediction 

exercise, and this projects into the estimation of kinetic energy.  

 

7. Conclusions 

The scaling relationship proposed in this paper, alternatively referred to as the RoBaP model, 

provides a novel means for quantifying the capacity of rockfall barriers to withstand impact 

from rock blocks. The model is expressed in terms of three key dimensionless parameters that 

combine the most important physical variables involved in barrier impact, including those for 

block size, barrier stiffness, mesh geometry, and yield strength of the mesh. As the basis for 

the RoBaP model, it is shown that these three dimensionless parameters are strongly 

correlated, with the correlations established based on results form a large number of 

numerical simulations performed using the finite element code ABAQUS/Explicit. In 

addition to providing a concise means for representing barrier performance over a range of 

variables, the RoBaP model encapsulates the so-called bullet effect referring the reduction in 

kinetic energy required to perforate a mesh as the block size decreases. The ability of the 

model to capture the bullet effect is demonstrated through an explicit example from the 

literature where performance of a full rockfall protection barrier was investigated. In this 

example, the predicted values of kinetic energy are fairly close to the data presented in the 

previous study, and most importantly, the decrease in kinetic energy at failure with 

decreasing block size is well captured. 

 

Prior to this study, there was no efficient and practical tool for the practitioners to estimate 

the performance of barriers when impacted by blocks of different size. With the RoBaP 

model, test results for a single block size provide sufficient information to predict the 

performance for other block sizes. Since experiments and numerical simulations are typically 

performed at great expense in terms of cost and/or time, this predictive capability of the 

model is invaluable.  

  

The RoBaP model can be represented graphically as a network of curves relating the so-

called performance parameter (E
*
), the strength-stiffness parameter (S

*
), and the geometrical 
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parameter (G
*
). The performance parameter E

*
 quantifies the impact resistant of a barrier, 

and it is not directly related to kinetic energy but rather the critical block speed required to 

fail the barrier. The parameter S
*
 characterizes the extent to which a barrier deforms prior to 

failure, and G
*
 describes the local geometry of the mesh in relation to the block size. As 

shown in Figure 11, E
*
 and S

*
 are linearly related on a log-log scale, and an increase in G

*
 

causes an upward shift of the E
*
-S

*
 lines on such a plot. Mathematically, the relationship 

between E
*
, S

*
, and G

*
 is defined by the function F (see Eq. (6)); however, an appropriate 

form for the full function F has yet to be determined. Determining F is left for future study, 

where additional data including that from experiments might be utilized. 

 

The existence of the bullet effect suggests that no single value of kinetic energy (design 

value) can satisfactorily quantify barrier performance over a range of block sizes. The 

dependence of the design value on block size can be attributed to the presence of both elastic 

and plastic mechanisms of energy dissipation.  For large blocks, the kinetic energy is 

primarily dissipated elastically, with deformation occurring in the barrier as a whole, and for 

small blocks, localized plastic failures occur. The results of this study suggest that kinetic 

energy as used in barrier performance criteria should perhaps be abandoned in favor of the 

critical speed, so that the analyst is automatically forced to think in terms of “performance 

curves” rather than unique design values. This paper is a first attempt to generate such 

dimensionless performance curves. 

 

 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

23 

 

References 

Anderheggen E, Volkwein A, Grassl H (2002) Numerical Simulation of Highly Flexible Rockfall Protection 

systems. In: Proc. Fifth World Congress on Computational Mechanics. Vienna, Austria 

 

Arndt B, Ortiz T, Turner AK (2009) Colorado’s Full-Scale Field Testing of Rockfall Attenuator Systems. 

Transp Res E-Circular, E-C141 

 

 

Bertolo P, Oggeri C, Peila D (2009) Full-scale testing of draped nets for rock fall protection. Can Geotech J 46 

(3):306-317. doi:10.1139/T08-126 

 

Buckingham E (1914) On physically similar systems: illustrations of the use of dimensional analysis. Phys Rev 

4:345–76 

 

Buzzi O, Giacomini A, Spadari M, Fityus S (2011) Numerical modeling of a rock fall mesh perforation upon 

impact. In: Proceedings of the 13th International Conference of the IACMAG 2011. Sydney, Australia, pp 1141-

1146 

 

Cantarelli G, Giani GP, Gottardi G, Govoni L (2008) Modelling Rockfall Protection Fences. In: The first world 

landslide forum – Proceedings. ICL, Tokyo, pp103-108 

 

Cazzani A, Mongiovì L, Frenez T (2002) Dynamic finite element analysis of interceptive devices for falling 

rocks. Int J Rock Mech Min Sci 39 (3):303-321. doi:10.1016/s1365-1609(02)00037-0 

 

De Col R, Cocco (1996) Motivazioni tecniche ed economiche per la standardizzazione di prove sulle opere 

paramassi nella Provincia Autonoma di Trento. In: Giornata di studio su “La protezione contro la caduta di 

massi dai versanti rocciosi”. GEAM, Torino, pp 65–72 

 

Descoeudres F, Montani Stoffel S, Böll A, Gerber W, Labiouse V (1999) Rockfalls. In: Coping study on 

Disaster Resilient Infrastructure. IDNDR, Zurich, pp 37-47 

 

Duffy JD, Smith DD (1990) Field Tests and Evaluation of Rockfall Restraining Nets. No. CA/TL-90/05, Final 

Report. California Dept. of Transportation, San Luis Obispo, Ca. 

 

EOTA (2008) Guideline for European technical approval of falling rock protection kits (ETAG 027). Brussels  

Gerber W (2001) Guideline for the approval of rockfall protection kits. Swiss Agency for the Environment, 

Forests and Landscape (SAEFL). Swiss Federal Research Institute WSL, Berne 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

24 

 

Giani GP (1992) Rock Slope Stability Analysis. Balkema, Rotterdam 

 

Grassl H, Volkwein A, Anderheggen E, Ammann WJ (2002) Steel-net rockfall protection - experimental and 

numerical simulation. In: Seventh International Conference on Structures Under Shock and Impact. Montreal, 

Canada, pp 143-153 

 

Hearn G, Barrett RK, Henson HH (1995) Testing and modeling of two rockfall barriers. In: Transportation 

Research Record, vol. 1504. National Research Council, Washington DC, pp 1-11 

 

Johnson W (1972) Impact Strength of Materials. Edward Arnold, London 

 

Langhaar HL (1951) Dimensional Analysis and Theory of Models. Wiley, New York 

 

Li QM, Jones N (2000) On dimensionless numbers for dynamic plastic response of structural members. Arch 

Appl Mech 70 (4):245-254 

 

Peila D, Pelizza S, Sassudelli F (1998) Evaluation of Behaviour of Rockfall Restraining Nets by Full Scale 

Tests. Rock Mech Rock Eng 31 (1):1-24.  

 

Peila and Oggeri (2005). Barriere paramassi a rete, Tecnologia e criteri pregettuali. Quaderni di Studi e 

Documentazione, GEAM, ISBN 88-901342-5-9, 105 pp. 

 

Volkwein A (2005) Numerical Simulation of flexible rockfall protection systems. In: Proc. Computing in Civil 

Engineering. ASCE, Cancun 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



         Dr Olivier Buzzi 

     Centre for Geotechnical and Materials Modelling 

      University of Newcastle, NSW, Australia 

 

 

 

Prof. Giovanni Barla 

Editor of Rock Mechanics and Rock Engineering, 

Springer 

 

 

Dear Prof Barla, 

 

 

My colleagues and I would like to submit the manuscript entitled “Prediction of the 

bullet effect for rockfall barriers: a scaling approach” to Rock Mechanics and Rock 

Engineering. This manuscript has never been published anywhere and it is the first 

time it is submitted for publication. All the authors have agreed to send it to your 

journal , in its current form, for potential publication. Thank you for considering our 
manuscript. 

 

Best regards, 

 

 

 

 

 

Olivier Buzzi 

 

 

Cover Letter
Common.Links.ClickHereToDownload

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/rmre/download.aspx?id=15070&guid=0d29707e-a851-4ffb-8b6f-5d7baf3567da&scheme=1


  
(a) 

(b) 

0 .2 0.4 0.6 0.8 1 1. 2 1 .4
Block Diam eter [m ]

0

1 00

2 00

3 00

4 00

5 00

K
in

et
ic

 E
ne

rg
y 

[k
J]

Figure 1
Common.Links.ClickHereToDownload

http://www.editorialmanager.com/rmre/download.aspx?id=15071&guid=22c6f6b0-eb37-4dae-9f6b-e0f17d03a92f&scheme=1


Figure 2a
Common.Links.ClickHereToDownloadHighResolutionImage

http://www.editorialmanager.com/rmre/download.aspx?id=15072&guid=94f43c4c-6777-47fa-9954-3517234e5b1f&scheme=1


Figure 2b
Common.Links.ClickHereToDownloadHighResolutionImage

http://www.editorialmanager.com/rmre/download.aspx?id=15073&guid=975d1f37-1609-4886-8b3e-ea2a669f0832&scheme=1


Db 

H 

H 

Figure 3
Common.Links.ClickHereToDownload

http://www.editorialmanager.com/rmre/download.aspx?id=15074&guid=d83183d0-325d-4871-9dbe-ff756af18e96&scheme=1


 

 

(a) 

(b) 

(c) 

Figure 4
Common.Links.ClickHereToDownload

http://www.editorialmanager.com/rmre/download.aspx?id=15075&guid=88d2064f-6041-4965-aa04-ea3ed22dde7d&scheme=1


High stress level Low stress level Medium stress 

level 

2.5 m 

5 m 

2.5 m 

Figure 5
Common.Links.ClickHereToDownload

http://www.editorialmanager.com/rmre/download.aspx?id=15076&guid=95fb1f1a-4ce8-4360-97cf-03392d966f89&scheme=1


Figure 6
Common.Links.ClickHereToDownloadHighResolutionImage

http://www.editorialmanager.com/rmre/download.aspx?id=15077&guid=e32cae68-ab81-47a7-a2ac-bfae729e9624&scheme=1


Figure 7
Common.Links.ClickHereToDownloadHighResolutionImage

http://www.editorialmanager.com/rmre/download.aspx?id=15078&guid=b56c414b-e1b2-40a1-b041-d908392d28fd&scheme=1


Figure 8
Common.Links.ClickHereToDownloadHighResolutionImage

http://www.editorialmanager.com/rmre/download.aspx?id=15079&guid=fcecebd1-8056-4fb2-879f-440240bdee8d&scheme=1


Figure 9
Common.Links.ClickHereToDownloadHighResolutionImage

http://www.editorialmanager.com/rmre/download.aspx?id=15080&guid=97e021b3-057b-42e7-aa60-496c74b7a5ad&scheme=1


Figure 10
Common.Links.ClickHereToDownloadHighResolutionImage

http://www.editorialmanager.com/rmre/download.aspx?id=15081&guid=2ed116e4-159f-44c1-bbb1-2a37275c3429&scheme=1


Figure 11
Common.Links.ClickHereToDownloadHighResolutionImage

http://www.editorialmanager.com/rmre/download.aspx?id=15082&guid=cc0d8765-3924-4263-9dad-3407212782ea&scheme=1


 

 

 

 

 

 

 

 

 

 

 

 

 
(a) (b) 

0.2 0.4 0.6 0.8 1 1.2 1.4
Block Diameter [m]

0

100

200

300

400

500

600

700

K
in

et
ic

 E
ne

rg
y

 [
kJ

]

Cazzani e t al. (2002)
Prediction 

Figure 12
Common.Links.ClickHereToDownload

http://www.editorialmanager.com/rmre/download.aspx?id=15083&guid=97fc9109-2353-4b34-ac04-788c8b11d0ba&scheme=1

